5,508 research outputs found

    Magnetic Schr\"odinger Operators as the Quasi-Classical Limit of Pauli-Fierz-type Models

    Full text link
    We study the quasi-classical limit of the Pauli-Fierz model: the system is composed of finitely many non-relativistic charged particles interacting with a bosonic radiation field. We trace out the degrees of freedom of the field, and consider the classical limit of the latter. We prove that the partial trace of the full Hamiltonian converges, in resolvent sense, to an effective Schr\"odinger operator with magnetic field and a corrective electric potential that depends on the field configuration. Furthermore, we prove the convergence of the ground state energy of the microscopic system to the infimum over all possible classical field configurations of the ground state energy of the effective Schr\"odinger operator.Comment: 26 pages, pdfLatex. Final version to appear in J. Spectr. Theor

    Renormalization-group at criticality and complete analyticity of constrained models: a numerical study

    Get PDF
    We study the majority rule transformation applied to the Gibbs measure for the 2--D Ising model at the critical point. The aim is to show that the renormalized hamiltonian is well defined in the sense that the renormalized measure is Gibbsian. We analyze the validity of Dobrushin-Shlosman Uniqueness (DSU) finite-size condition for the "constrained models" corresponding to different configurations of the "image" system. It is known that DSU implies, in our 2--D case, complete analyticity from which, as it has been recently shown by Haller and Kennedy, Gibbsianness follows. We introduce a Monte Carlo algorithm to compute an upper bound to Vasserstein distance (appearing in DSU) between finite volume Gibbs measures with different boundary conditions. We get strong numerical evidence that indeed DSU condition is verified for a large enough volume VV for all constrained models.Comment: 39 pages, teX file, 4 Postscript figures, 1 TeX figur

    Renormalization Group in the uniqueness region: weak Gibbsianity and convergence

    Full text link
    We analyze the block averaging transformation applied to lattice gas models with short range interaction in the uniqueness region below the critical temperature. We prove weak Gibbsianity of the renormalized measure and convergence of the renormalized potential in a weak sense. Since we are arbitrarily close to the coexistence region we have a diverging characteristic length of the system: the correlation length or the critical length for metastability, or both. Thus, to perturbatively treat the problem we have to use a scale-adapted expansion. Moreover, such a model below the critical temperature resembles a disordered system in presence of Griffiths' singularity. Then the cluster expansion that we use must be graded with its minimal scale length diverging when the coexistence line is approached

    A combinatorial proof of tree decay of semi-invariants

    Full text link
    We consider finite range Gibbs fields and provide a purely combinatorial proof of the exponential tree decay of semi--invariants, supposing that the logarithm of the partition function can be expressed as a sum of suitable local functions of the boundary conditions. This hypothesis holds for completely analytical Gibbs fields; in this context the tree decay of semi--invariants has been proven via analyticity arguments. However the combinatorial proof given here can be applied also to the more complicated case of disordered systems in the so called Griffiths' phase when analyticity arguments fail

    Resource-driven Substructural Defeasible Logic

    Full text link
    Linear Logic and Defeasible Logic have been adopted to formalise different features relevant to agents: consumption of resources, and reasoning with exceptions. We propose a framework to combine sub-structural features, corresponding to the consumption of resources, with defeasibility aspects, and we discuss the design choices for the framework

    A novel topology for a HEMT negative current mirror

    Get PDF
    A new solution for the implementation of a HEMT negative current source is presented. The topology can be also profitably employed as a current mirror and as an active load in high-gain MMICs voltage amplifiers. A small-signal model of the proposed circuit is developed which allows to find accurate expressions for the required transfer functions (i.e., the output impedance of the current source, and the current gain of the circuit when operated as a current mirror). Design examples using Philips PML ED02AH GaAs PHEMT process are provided. Spice simulations show that a 10- kW output impedance for the current source and a 35dB voltage gain for a differential pair loaded with the proposed current mirror are easily achieved
    • …
    corecore